Skip to content

Index

Why do we need a GPU Operator for Kubernetes

This is a follow up from the previous blog where we discussed device plugins for GPUs in Kubernetes. We reviewed why the Nvidia device plugin was necessary for GPU support in Kubernetes. A GPU Operator is needed in Kubernetes to automate and simplify the management of GPUs for workloads running on Kubernetes.

In this blog, we will look at how a GPU operator helps automate and streamline operations through the lens of a market leading implementation by Nvidia.

Without and With GPU Operator

Using GPUs in Kubernetes

Unlike CPU and Memory, GPUs are not natively supported in Kubernetes. Kubernetes manages CPU and memory natively. This means it can automatically schedule containers based on these resources, allocates them to Pods, and handles resource isolation and over-subscription.

GPUs are considered specialized hardware and require the use of device plugins to support GPUs in Kubernetes. Device Plugins help make Kubernetes GPU-aware allowing it to Discover, Allocate and Schedule GPUs for containerized workloads. Without a device plugin, Kubernetes is unaware of the GPUs available on the nodes and cannot assign them to Pods. In this blog, we will discuss why GPUs are not natively supported and understand how device plugins help address this gap.

Device Plugin K8s

Enhancing Security and Compliance in Break Glass Workflows with Rafay

Maintaining stringent security and compliance standards is more critical than ever today. Implementing break glass workflows for developers presents unique challenges that require careful consideration to prevent unauthorized access and ensure regulatory compliance.

In the previous blog, we introduced the concept of break glass workflows and why organizations require it. This blog post delves into how Rafay enables Platform teams to orchestrate secure and compliant break glass workflows within their organizations. Watch a video recording of this feature in Rafay.

Rafay Newsletter-September 2024

Welcome to the September 2024 edition of the Rafay customer newsletter. This month, we’re excited to bring you the latest product enhancements and insightful content crafted to help you make the most of your AI/ML, Kubernetes, and cloud-native operations.

Every month, we push out a number of incremental updates to our product documentation, new functionality, our YouTube channel, tech blogs etc. Our users tell us that it will be great if we summarized all the updates for the month in the form of a newsletter that they can read or listen to in 10 minutes.

Newsletter Sep 2024

Why do we need Custom Schedulers for Kubernetes?

The Kubernetes scheduler is the brain that is responsible for assigning pods to nodes based on resource availability, constraints, and affinity/anti-affinity rules. For small to medium-sized clusters running simple stateless applications like web services or APIs, the default Kubernetes scheduler is a great fit. The default Kubernetes scheduler manages resource allocation, ensures even distribution of workloads across nodes, and supports features like node affinity, pod anti-affinity, and automatic rescheduling.

The default scheduler is extremely well-suited for long-running applications like web services, APIs, and microservices. Learn more about the scheduling framework.

Unfortunately, AI/ML workloads have very different requirements that the default scheduler cannot satisfy!

k8s Scheduling Framework

Using Amazon EKS Pod Identity and Associations with Rafay - Part 2

In continuation of our Part 1 of our blog introducing Pod Identity vs. IRSA for Amazon EKS, this is Part 2, where we will explore how to use Amazon EKS Pod Identity with the Rafay platform. This blog post will guide you through deploying the Amazon EKS Pod Identity Agent and configuring role associations, enabling your Kubernetes pods to securely access AWS services.

Pod Accessing AWS service

Break Glass Workflows for Developer Access to Kubernetes Clusters - Introduction

In any large-scale, production-grade Kubernetes setup, maintaining the security and integrity of the clusters is critical. However, there are exceptional circumstances—such as production outages or critical bugs—where developers need emergency access to a Kubernetes cluster to resolve issues.

This is where a "Break Glass" process comes into play. It is a controlled procedure that grants temporary, elevated access to developers in critical situations, with the appropriate safeguards in place to minimize risks.

Break Glass