Skip to content

Common Configs

This page captures some common configurations we have seen GPU Clouds implement

NVIDIA B200

  • 1× or 8× B200 GPU 180GB SXM
  • 16× or 128× vCPU Intel Emerald Rapids
  • 224 or 1792 GB DDR5
  • 3.2 Tbit/s InfiniBand
  • Ubuntu 22.04 LTS (CUDA® 12)

NVIDIA H200

  • 1× or 8× H200 GPU 141GB SXM
  • 16× or 128× vCPU Intel Sapphire Rapids
  • 200 or 1600 GB DDR5
  • 3.2 Tbit/s InfiniBand
  • Ubuntu 22.04 LTS (CUDA® 12)

NVIDIA H100

  • 1× or 8× H100 GPU 80GB SXM
  • 16× or 128× vCPU Intel Sapphire Rapids
  • 200 or 1600 GB DDR5
  • 3.2 Tbit/s InfiniBand
  • Ubuntu 22.04 LTS (CUDA® 12)

NVIDIA L40S (Intel)

  • 1× L40S GPU 48GB PCIe
  • 8× or 40× vCPU Intel Xeon Gold
  • 32 or 160 GB DDR5
  • Ubuntu 22.04 LTS (CUDA® 12)

NVIDIA L40S (AMD)

  • 1× L40S GPU 48GB PCIe
  • 16× or 192× vCPU AMD EPYC
  • 96 or 1152 GB DDR5
  • Ubuntu 22.04 LTS (CUDA® 12)

NVIDIA A100

  • 1× or 8× A100 GPU 40GB or 80GB (SXM or PCIe)
  • 16× to 128× vCPU Intel Cascade Lake or Milan
  • 256 to 2048 GB DDR4/DDR5
  • 3.2 Tbit/s InfiniBand or 100 Gbps Ethernet
  • Ubuntu 20.04 / 22.04 LTS (CUDA® 11/12)

NVIDIA A40

  • 1× A40 GPU 48GB PCIe
  • 8× to 64× vCPU Intel Xeon Gold / EPYC
  • 128 to 1024 GB DDR4/DDR5
  • 10/25/100 Gbps Ethernet
  • Ubuntu 20.04 / 22.04 LTS (CUDA® 11/12)

NVIDIA T4

  • 1× T4 GPU 16GB PCIe
  • 8× to 32× vCPU Intel Xeon / AMD EPYC
  • 64 to 512 GB DDR4
  • 10/25 Gbps Ethernet
  • Ubuntu 20.04 LTS (CUDA® 11)

NVIDIA L4

  • 1× L4 GPU 24GB PCIe
  • 8× to 32× vCPU Intel Xeon / AMD EPYC
  • 128 to 512 GB DDR5
  • 25 Gbps Ethernet or local NVMe
  • Ubuntu 22.04 LTS (CUDA® 12)

By Use Case

End users can select the VM configuration best suited for on their computational requirements.

Single GPU (1x)

Perfect for development, prototyping, and small-scale inference

Dual GPU (2x)

Ideal for medium-scale training and distributed workloads

Quad GPU (4x)

Designed for large-scale training and high-performance computing


By GPU Type/Model

Nvidia H100 SXM

80GB HBM3 memory per GPU, optimized for AI/ML workloads

Nvidia L40S

48GB GDDR6 memory per GPU, ideal for inference and training